III B.Tech - II Semester – Regular Examinations – JUNE 2023

DYNAMICS OF MACHINERY (MECHANICAL ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks	
	UNIT-I					
1	a)	Three masses P, Q and R with masses 12 kg, 11 kg and 18 kg respectively revolve in the same plane at radii 120 mm, 144 mm	L3	CO1	7 M	
		and 70 mm respectively. The angular position of Q and R are 60° and 135° from				
		P. Determine the position and magnitude of mass S at radius 152 mm to balance the system.				
	b)	Discuss the balancing of several masses in different planes.	L2	CO1	7 M	
	OR					
2	in-1 is 1 200 300 apa	The firing order in a 6-cylinder vertical 2-stroke L3 CO1 14 M n-line engine is 1-4-5-2-3-6. The piston stroke s 100 mm and length of each connecting rod is 00 mm. The cylinder center lines are spaced at 00 mm. In the end view, the cranks are 60° part. The mass of reciprocating parts is 100 kg er cylinder and that of rotating parts 50 kg per				

	crank. The engine rotates at 200 rpm. Examine					
	the engine for the balance of primary and					
	secondary forces and couples. Find the					
	maximum unbalanced force and couples.					
UNIT-II						
3	a) The rotor of the turbine of a ship makes	L3	CO2	7 M		
	1500 rpm clockwise when viewed from the					
	stern. The rotor has a mass of 800 kg and					
	its radius of gyration is 300 mm. Find the					
	maximum gyro-couple transmitted to the					
	hull when the ship pitches with maximum					
	angular velocity of 1 rad/s.					
		12	CO2	7 М		
	b) Derive the expression for gyroscopic	LS	CO2	7 M		
	couple.					
	OR					
4	The crank and connecting rod of a vertical petrol		CO2	14 M		
	engine running at 1800 rpm are 60 mm and					
	270 mm respectively. The diameter of the piston					
	is 100 mm and the mass of the reciprocating parts is 1.2 kg. During the expansion stroke					
	when the crank has turned 20° from the top dead center, the gas pressure is 650 kN/m ² .					
	Determine: (i) The net force on the piston					
	(ii) The net load on the connecting rod (iii)					
	Thrust on the cylinder walls (iv) The speed at					
	which the gudgeon pin load is reversed in					
	direction.					
			I			
UNIT-III						
5	a) Differentiate Governor and Flywheel of an	L2	CO3	2 M		
	automotive.					
	b) The equation of the turning moment	L3	CO3	10 M		
		1	I			

	1			<u> </u>	
		diagram for a three-crank engine is given			
		by T (N-m) = 25000 - 7500 sin 3 θ , where θ			
		radians is the crank angle from the inner			
		dead centre. The moment of inertia of the			
		flywheel is 400 kg-m ² , and the mean engine			
		speed is 300 rpm. Calculate the power of			
		the engine and the total percentage			
		fluctuation of speed of the flywheel, if the			
		resisting torque is constant.			
		OR			
6	a)	Explain the terms hunting, isochronism and	L2	CO3	7 M
		stability relating to governors.			
	b)	Explain the working of Porter Governor	L2	CO3	7 M
		with a neat sketch.			
		UNIT-IV			
7	a)		L3	CO4	7 M
		and natural frequency of the following			
		vibrating system.			
		11111111			
		E G			
		KIE GK2			
		9 8			
		a b			
		- TAN			
	b)	Explain the basic features of a vibrating	L2	CO4	7 M
		system. Also list the causes of vibrations.			
	T	OR			
8	a)	Explain various types of vibrations.	L2	CO4	7 M
	b)	A shaft of 10 cm diameter and 100 cm long	L3	CO4	7 M
		is fixed at one end and other end carries a			

				<u> </u>		
		flywheel of mass 80 kg. Taking Young's				
		modulus for the shaft material as				
		2×10^6 kg/cm ² , find the natural frequency of				
		longitudinal and transverse vibrations.				
UNIT-V						
9	a)	The following data relate to a machine	L3	CO5	7 M	
		supported on 4 springs:				
		mass of the machine $=120$ kg,				
		stroke = 90mm,				
		mass of the reciprocating parts $= 2.5$ kg and				
		speed = 750 rpm.				
		Springs are symmetrically placed with				
		respect to the center of the mass of the				
		machine. Find the combined stiffness of the				
		springs so that the force transmitted to the				
		foundation is $1/22$ of the impressed force.				
	b)		L2	CO5	7 M	
		subjected to support motion.				
OR						
10	a)	Derive the equation of motion for a	L3	CO5	7 M	
		harmonically excited undamped vibration				
		system.				
	b)	A spring-mass system consists of a mass	L3	CO5	7 M	
		weighing 100 N and a spring with a stiffness				
		of 2000 N/m. The mass is subjected to				
		resonance by a harmonic force of 25 N.				
		Find the amplitude of the forced motion at				
		the end of (i) 0.25 cycle, (ii) 2.5 cycles.				